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Feedforward Neural Networks - Multilayer Perceptrons

Multilayer Perceptrons (MLP)

Feedforward Neural Networks, Deep feedforward Networks

Goal

to approximate function f ∗

y = f ∗(x) (1)

Classification y ∈ {c1, c2, . . . cK}
Regression y ∈ R

A feedforward network

y = f (x; θ) (2)

Feedforward: x through f and finally y
No feedback connections as recurrent neural network
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Feedforward Neural Networks - Multilayer Perceptrons

Multilayer Perceptrons (MLP)

Feedforward Neural Networks

network: composing different functions

a directed acyclic graph

e.g. f (1), f (2), and f (3)

f (x) = f (3)(f (2)(f (1)(x)))

f (1) is 1st layer
f (2) is 2nd layer

final layer is called output layer

other layers are called hidden layers

length of the chain is the depth of the network

width is the dimensionality of the hidden layers
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XOR Example

Example: Learning XOR

(Goodfellow 2017)

XOR is not linearly separable

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.
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Figure 6.1, leftFigure 1: XOR in x space1.

1Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR

X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
XOR is not linearly separable

XOR target function y = f ∗(x)

model function y = f (x; θ)

XOR MSE loss function

J(θ) =
1

4

∑

x∈X
(f ∗(x)− f (x; θ))2

If model is a linear single-layer with one unit

f (x; θ) = xTw + b
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XOR Example

Example: Learning XOR

A single-layer with one hidden unit also called perceptron:

f (x; θ) = xTw + b

cannot separate XOR

Linear separability (5)
Example:
N = 4, d = 2: 24 = 16 dichotomies
14 dichotomies are linearly separable (everything but XOR)
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Figure 2: XOR is not linearly separable2.

2Johan Suykens. Lecture notes in Artificial Neural Networks. 2015.
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XOR Example

Example: Learning XOR

A single layer with two hidden units, and the output layer

(Goodfellow 2017)

Network Diagrams
CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left)In this style, we draw every unit as a node in the graph.
This style is very explicit and unambiguous but for networks larger than this example
it can consume too much space. (Right)In this style, we draw a node in the graph for
each entire vector representing a layer’s activations. This style is much more compact.
Sometimes we annotate the edges in this graph with the name of the parameters that
describe the relationship between two layers. Here, we indicate that a matrix W describes
the mapping from x to h, and a vector w describes the mapping from h to y. We
typically omit the intercept parameters associated with each layer when labeling this kind
of drawing.

model, we used a vector of weights and a scalar bias parameter to describe an
affine transformation from an input vector to an output scalar. Now, we describe
an affine transformation from a vector x to a vector h, so an entire vector of bias
parameters is needed. The activation function g is typically chosen to be a function
that is applied element-wise, with hi = g(x>W:,i + ci). In modern neural networks,
the default recommendation is to use the rectified linear unit or ReLU (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation
function g(z) = max{0, z} depicted in figure 6.3.

We can now specify our complete network as

f(x; W , c, w, b) = w> max{0, W>x + c} + b. (6.3)

We can now specify a solution to the XOR problem. Let

W =


1 1
1 1

�
, (6.4)

c =


0
�1

�
, (6.5)
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Figure 6.2
Figure 3: Network diagrams3.

3Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR

One hidden layer with two hidden units, and the output layer

h = f (1)(x;W, c)

y = f (2)(h;w, b)

f (x,W, c,w, b) = f (2)(f (1)(x))

W and w weights of a linear transformation
b and c biases

f (1)(x) = WTx

f (2)(h) = hTw

f (x) = wTWTx

(intercept/bias terms ignored)
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XOR Example

Example: Learning XOR

For a nonlinearity: activation function g

h = g(WTx + c)

A rectified linear unit (ReLU) is the activation function for many feedforward
networks

g(z) = max{0, z}

(Goodfellow 2017)

Rectified Linear Activation

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.
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Figure 6.3
Figure 4: ReLU activation function4.

4Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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XOR Example

Example: Learning XOR

Complete network

f (x,W, c,w, b) = wTmax{0,WTx + c}+ b

Let

W =

[
1 1
1 1

]

c =

[
0
−1

]

w =

[
1
−2

]

b = 0

Design matrix X

X =




0 0
0 1
1 0
1 1




XW =




0 0
1 1
1 1
2 2




XW + c =




0 −1
1 0
1 0
2 1




max{0,XW + c} =




0 0
1 0
1 0
2 1




wTmax{0,XW + c}+ b =




0
1
1
0
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Gradient-Based Learning

Gradient-Based Learning

In real life billions of model parameters

Gradient-based optimization algorithm provide solution with little error

Trained by iterative gradient-based optimizers
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Gradient-Based Learning

Gradient-Based Learning

- Cost function:

J(w, b) = −Ex,y p̂data logpmodel(y |x)

- Mostly negative log-likelihood as a cost function

- So, minimizing the cost leads to maximum likelihood estimation

- Cross entropy between the training data and model’s prediction as a cost
function

- Typically total cost composed of cross entropy and regularization

- regularization terms (weight decay)

J(w, b) = λ||x||22 − Ex,y p̂data logpmodel(y |x)

· mean squared error (MSE)

f ∗ = argmin
f

Ex,y pdata ||y − f (x)||2
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Gradient-Based Learning

Gradient-Based Learning

Output units
The choice of output function determines the cross entropy

(Goodfellow 2017)

Output Types
Output Type Output 

Distribution
Output 
Layer

Cost 
Function

Binary Bernoulli Sigmoid Binary cross-
entropy

Discrete Multinoulli Softmax Discrete cross-
entropy

Continuous Gaussian Linear Gaussian cross-
entropy (MSE)

Continuous Mixture of 
Gaussian

Mixture 
Density Cross-entropy

Continuous Arbitrary See part III: GAN, 
VAE, FVBN Various

Figure 5: Output units5.

5Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Hidden Units

Hidden Units

Hidden units

input vectors x

computing an affine transformation z = WTx + b

element-wise nonlinear function g(z)

Most hidden units are distinguished by the choice of the activation function g(z)
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Hidden Units

Activation Functions

Rectified Linear units (ReLU)

g(z) = max{0, z}

Logistic sigmoid σ

σ(z) =
1

1 + exp(−z)

Hyperbolic tangent tanh

tanh(z) =
1− exp(−2z)

1 + exp(−2z)

(Goodfellow 2017)

Rectified Linear Activation
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
However, the function remains very close to linear, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.
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Figure 6.3

Activation functions σ(·)
• Some examples:
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• The choice of the activation function depends on the specific application
(classification, regression, ...). For neurons of input and output layer a
linear characteristic is often chosen.

• Derivatives of σ(·):
sigmoid: σ

′
= σ(1 − σ) [σ(x) = 1

1+exp(−x)]

tanh: σ
′
= 1 − σ2 [tanh(x) = 1−exp(−2x)

1+exp(−2x)]
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Architecture Design

Architecture Design

Architecture

Mostly in a chain structure

h(1) = g (1)(W(1)Tx + b(1))

h(2) = g (2)(W(2)Th(1) + b(2))

Main design choices

depth of the network
width of each layer

Deeper networks

fewer units per layer
fewer parameters
tend to be harder to optimize

Ideal network architecture via experimentation guided by monitoring the
validation error
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Back-Propagation

Back-Propagation

Forward propagation is flow from x to ŷ

During training forward propagation continue onward until cost J(θ)

backprop from cost J(θ) to network backwards to compute the gradient

Backprop is a method of computing gradient

Backprop makes it simple and inexpensive
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Back-Propagation

Back-propagation

Computational Graphs

Each node a variable

A variable might be scalar,
vector, matrix or tensor

An operation a simple function
of one or more variables

Functions more complex,
composed of many operations

directed edge from x to y
indicates x used to calculate y

(Goodfellow 2017)

Simple Back-Prop Example
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Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.
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Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
The function remains very close to linear, however, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions. 170
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Back-Propagation

Back-propagation

Examples of Computational Graphs

(Goodfellow 2017)

Computation Graphs
CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Figure 6.8: Examples of computational graphs. (a)The graph using the ⇥ operation to
compute z = xy. (b)The graph for the logistic regression prediction ŷ = �

�
x>w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u(i). (c)The
computational graph for the expression H = max{0, XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d)Examples a–c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty �

P
i w2

i .
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ReLU layer

Logistic regression
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and weight decay

Figure 6: Computation Graphs6.

6Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Back-Propagation

Back-propagation

Back-propagation is a chain rule of calculus

Highly efficient

x is a real number and f , g : R→ R,
y = g(x) and z = f (g(x)) = f (y)

Chain rule:

dz

dx
=

dz

dy

dy

dx

For x ∈ Rm, y ∈ Rn, g : Rm → Rn and
f : Rn → R

∂z

∂xi
=
∑

j

∂z

∂yj

∂yj
∂x

(Goodfellow 2017)

Symbol-to-Symbol 
Differentiation
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Figure 6.10: An example of the symbol-to-symbol approach to computing derivatives. In
this approach, the back-propagation algorithm does not need to ever access any actual
specific numeric values. Instead, it adds nodes to a computational graph describing how
to compute these derivatives. A generic graph evaluation engine can later compute the
derivatives for any specific numeric values. (Left)In this example, we begin with a graph
representing z = f(f(f(w))). (Right)We run the back-propagation algorithm, instructing
it to construct the graph for the expression corresponding to dz

dw . In this example, we do
not explain how the back-propagation algorithm works. The purpose is only to illustrate
what the desired result is: a computational graph with a symbolic description of the
derivative.

Some approaches to back-propagation take a computational graph and a set
of numerical values for the inputs to the graph, then return a set of numerical
values describing the gradient at those input values. We call this approach “symbol-
to-number” differentiation. This is the approach used by libraries such as Torch
(Collobert et al., 2011b) and Caffe (Jia, 2013).

Another approach is to take a computational graph and add additional nodes
to the graph that provide a symbolic description of the desired derivatives. This
is the approach taken by Theano (Bergstra et al., 2010; Bastien et al., 2012)
and TensorFlow (Abadi et al., 2015). An example of how this approach works
is illustrated in figure 6.10. The primary advantage of this approach is that
the derivatives are described in the same language as the original expression.
Because the derivatives are just another computational graph, it is possible to run
back-propagation again, differentiating the derivatives in order to obtain higher
derivatives. Computation of higher-order derivatives is described in section 6.5.10.

We will use the latter approach and describe the back-propagation algorithm in

214

Figure 6.10

Figure 7: Symbol-to-symbol
example
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Back-Propagation

Questions?

Thank you!
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