
Dynamic Programming

Florent Bouchez Tichadou

November 4, 2017

1 Course

Objectives:

• Efficiently compute a recursive formula.

Dynamic programming is achieved while following different steps.

1. Write down the recursive formula corresponding to your needs. The formula might con-
tain some conditionals.

2. Check the computations are finishing when using this formula (proof by induction).

3. Compute the complexity for the raw recursive computation. Are any function calls taking
place twice ?

4. Write the function in your favorite programming language.

5. Add a table storing results and modify your program to avoid duplicate computations.

6. Write the dependency graph of the calls. Find vectors describing these dependencies.
Follow these vectors to write a sequential program computing your function.

7. Optimize your sequential program for space.

Example

Naive recursive version

We consider as example the following formula:
fpx, yq “ fpx ´ 1, yq ` fpx, y ´ 1q with fp0, yq “ 1
and fpx, 0q “ 1 which enables us to compute ele-
ments from the pascal triangle.
A possible C program to compute this formula is dis-
played on the right.

int f (int x, int y) {
int result ;
if (x==0 || y==0)

result=1;
else

result= f(x´1, y) + f(x, y´1);
return result ;

}

Figure 1 displays the call tree of function f for parameters p3, 3q. We can see that many calls
are redundant. For instance fp2, 2q will be called twice, and fp1, 1q will be called 6 times! The
computing cost of f as it is written now is exponential.

Master MoSIG — GINF41E4 1



Dynamic Programming Algorithms and Program Design

fp3, 3q

fp2, 3q

fp1, 3q

fp0, 3q fp1, 2q

fp2, 2q

fp0, 2q fp1, 1q

fp0, 1q fp1, 0q

fp2, 1q

fp2, 0q

fp3, 2q

fp3, 1q

fp3, 0q

Figure 1: Call-tree for fp3, 3q

1 int cache[N][N];
2 int f_optim (int x, int y) {
3 if (cache[x][y] != ´1) return cache[x][y];
4 else {
5 int result ;
6 if (x==0 || y==0)
7 result=1;
8 else
9 result= f(x´1, y) + f(x, y´1);

10 cache[x][y] = result;
11 return result ;
12 }
13 }

Figure 2: Recursive version with caching

Optimized recursive version

In order to improve things we are going to remove redundant calculations by caching the results
of the sub-problems. This method is applicable every time a big problem uses multiple times
the results of sub-problems. In our case, the problem fpx, yq has sub-problems fpx ´ 1, yq and
fpx, y ´ 1q.

To achieve this we allocate an array (the cache) big enough to contain all results for all
different inputs of the f function. We then modify the function f in two steps: first we ensure
that results are stored in the cache before all return points of the function and then we ensure
that no duplicate computation takes place by checking the contents of the cache at entry point
of the function. Of course the cache needs to be initialized with values which will never be
mistaken with real results. In this example we can simply initialize all cache entries with ´1
since any result will always be positive.

Figure 2 shows the modified f function with two modifications, at lines 3 and 10. Let us
now we compute the cost of executing our algorithm with input pn1, n2q. This cost C is equal to
ř

x

ř

y cpx, yq where cpx, yq is the cost for computing the cache entry associated to px, yq, for all
reached values of x and y. In our case, cpx, yq “ Op1q since f contains no loop. We do not count
in f the cost of the (eventual) recursive calls since it is already counted in the corresponding
cache entries. This means that C “ Op1qˆ

ř

x

ř

y Op1q ď pn1`1qˆ pn2`1qˆOp1q “ Opn1n2q.

2



Dynamic Programming Algorithms and Program Design

p0, 0q x

y x “ n1

y “ n2

Figure 3: Dependence graph

10 int f_seq (int n1, int n2) {
11 for (int i = 0; i<=n1; i++)
12 for (int j = 0; j<=n2; j++) {
13 int result ;
14 if (i==0 || j==0) result=1;
15 else result = cache[i´1][j] + cache[i][j´1];
16 cache[i][ j] = result;
17 }
18 return cache[n1][n2];
19 }

Figure 4: Sequential code

Sequential version

Current cost is rather nice but we would like to optimize a bit more by getting rid of recursive
calls. We start by making a small drawing of the cache together with the dependencies between
the different results.

As Figure 3 shows, dependencies follow two directions: we have vertical vectors and hor-
izontal vectors. These dependencies mean that cache[i][ j] cannot be computed before cache[
i´1][j] and cache[i][ j´1]. We choose as a basis of our space the two vectors p0, 1q and p1, 0q
which translates into two nested loops, one loop on x and one loop on y. We have two possibil-
ities because we can choose which one is the inner-most and which one is the outer-most loop.
We choose here to iterate on y in the inner-loop.

Figure 4 shows the sequential code obtained. You can see that the body of the two nested
loops is almost identical to the body of the recursive version of Figure 2. The only difference
is that functions calls have been replaced by reading in the cache. Computing the cost of the
sequential algorithm is direct: Opn1n2q.

Memory optimization

The last step of optimisation which can be achieved is by reducing the amount of memory used,
which is currently in Opn2q. There is actually a simple way do do this, by using only one array
of size the dimension of the inner loop (in our previous example, n1, but we can choose the
smallest dimension). For the sake of learning, we will impose the constraint of not iterating

3



Dynamic Programming Algorithms and Program Design

p0, 0q x

y x “ n1

y “ n2

d0 d1 d2 d3 d4 d5 d6 d7

d8

d9

d10

d11

d12

outer
loop

inner
loop

loop vectors

Figure 5: Iterating on diagonals

along the x or y axis.1

Figure 5 shows a decomposition of the cache into diagonal lines (12 in this particular exam-
ple). Seeing the dependency arrows, It is clear than any cache value belonging to diagonal di
can be computed if all values of diagonal di´1 are available. Thus, if the outer-loop we choose
iterates on the diagonals and the inner loop iterates inside each diagonal we can compute the
final result while only storing two diagonals in memory. Thus, memory consumption can be
reduced from Opn2q to Opnq. We can see from the figure that inner-loop vector will be p´1, 1q
while for outer loop vector it will be p1, 1q.

You can find below the source code for this last function. We decompose the iterations on
the diagonals (on our example first from d0 to d7 and then from d8 to d12) into two loops. As
you can see it is very difficult to write such a function without a drawing of the cache guiding
your work.

int diagonal[2][N];
int f_horribilis (int n1, int n2) {

int x, y, result ;
int cache = 0; /∗ which diagonal to use: [0] or [1] ∗/
for (int d=0; d<=n1; d++, y=0) {

for (int x=d; x>=0; x´´, y++) {
if (x==0 || y==0) result=1;
else result = diagonal[1´cache][d´x´1] + diagonal[1´cache][d´x];
diagonal[cache][d´x] = result;

}
cache = 1´cache; /∗ switch cache between 0 and 1 ∗/

}
for (int d=1; d<=n2; d++, x=n1) {

for (int y=d; y<=n2; y++, x´´) {
if (x==0 || y==0) result=1;
else result = diagonal[1´cache][y´d] + diagonal[1´cache][y´d+1];
diagonal[cache][y´d] = result;

}
cache = 1´cache;

}
return diagonal[1´cache][0];

}

1As a side note, what we are about to do is frequent when trying to parallelize a nested loop.

4



Dynamic Programming Algorithms and Program Design

Exercises

Exercise 1 (Longest Common Subsequence (LCS))

This paragraph taken from the Wikipedia page:

The longest common subsequence (LCS) problem is to find the longest subsequence
common to all sequences in a set of sequences (often just two). (Note that a subse-
quence is different from a substring, for the terms of the former need not be consec-
utive terms of the original sequence.) It is a classic computer science problem, the
basis of file comparison programs such as diff, and has applications in bioinformat-
ics.

We will study here the problem of LCS on two sequences. Formally, the problem is defined
as follows: Given two sequences X “ xx1, x2, . . . , xmy and Y “ xy1, y2, . . . , yny; then Z “

xz1, z2, . . . , zky is a common subsequence of X and Y if there exists two sequences of stricly
increasing indices xi1, i2, . . . , iky and xj1, j2, . . . , jky such that for all 1 ď l ď k, zl “ xil “ yjl .
For instance Z “ xA,C,B,Cy is a common subsequence of X “ xA,B,D,C,A,B,Cy and
Y “ xB,A,B,C,B,D,C,By.

Given a common subsequence Z of X and Y , it is a longest common subsequence (LCS)
if, for every common subsequence Zα of X and Y , the length of Z is greater or equal to the
length of Zα. For instance, in the above example, Z is not a LCS as xA,B,C,B,Cy is also a
common subsequence of X and Y and of greater length.

Question 1.1 Given two sequences Z and X, write an algorithm that checks whether Z is a
subsequence of X or not. What is its complexity?

Question 1.2 How many subsequences of X are there? What would be the complexity of a
LCS algorithms that checks for every subsequence of X if it is a subsequence of Y ?

Optimal sub-structure (Warning: difficult questions)

A condition for dynamic programming to work is that the problem to solve has an optimal
sub-structure, i.e., an optimal solution to the problem includes optimal solutions to its sub-
problems.

Question 1.3 We want to characterize a LCS in terms of LCS of subproblems. Given a solution
Z, state the conditions under which Z is a LCS of X and Y (based on the relations between Z
and subproblems of LCSpX,Y q).

Question 1.4 Prove the LCS has an optimal sub-structure (i.e., prove the conditions found in
the previous question).

Sub-problem superposition

A second condition for dynamic programming to work is that the sub-problems to a problem
have superposition, i.e., a recursive algorithm will solve the same sub-problems again and
again.2 If the number of different sub-problems is polynomial in the size of the input, then
dynamic programming can solve the problem in polynomial time, even though a direct recursive
solution would require exponential time.

2A contrario, in a divide-and-conquer algorithm, generated sub-problems are different.

5



Dynamic Programming Algorithms and Program Design

Question 1.5 Using the characterization of question 1.3, what would be the complexity of a
direct recursive implementation for finding the LCS of X and Y ? Prove that the LCS problem
has sub-problem superposition.

Question 1.6 Propose a way to store the length of the LCS of sub-problems so that we do not
need to re-compute them. In which order do you need to solve the sub-problems? Test it by
computing the LCS of x1, 0, 1, 0, 0, 1, 0, 1y and x0, 1, 1, 1, 1, 0, 1, 0y.

Question 1.7 Write the corresponding algorithm for finding the LCS of two sequences.

Question 1.8 With the previous question, we only know the maximum length of a common
subsequence of X and Y . What else do you need to store in order to actually exhibit a LCS?
Modify your algorithm so that it returns a LCS of X and Y .

Question 1.9 Does every sub-problem needs to be computed? Propose a solution to compute
only the required sub-problems. Does it change the complexity?

Try to use less memory. What can you still do and what can’t you?

Exercise 2 (Selling apples)

An apple producer is selling its production ofN tons to someK different resellers. The producer
can decide the quantity of apples he is selling to each reseller but the resellers decide how much
they pay for each ton they buy. The producer has some information on the price paid for each
ton and for each reseller represented in an array P .

Write an optimized program computing the best choices for the producer.

Exercise 3 (Pretty text printing)

You have a very old printer printing text with fixed width. You need to print some text currently
encoded in only one line. You do not allow hyphenation, i.e., a word cannot be broken and
printed on two different lines; You can however choose where you break each line. As such it
is possible to carefully choose where to break the lines in order to maximize the beauty of the
final document. We say a document is beautiful if all lines end very close from the end of the
page and ugly if some lines end very far from the edge.

Question 3.1 Devise a greedy algorithm for text printing. Does it produces pretty printed text?
Show that greedy is optimal in the number of lines used.

We need a metric on the notion of beauty. In TEX, D. Knuth chose the sum of the squared
space left over at the end of every line. The goal is to minimize this sum.

Question 3.2 Why choose this metric over the simpler sum of space left?

We call C the number of characters that can fit in a line.

Question 3.3 Propose a formula that computes the optimal distance given a sentence to print.

Question 3.4 Use your formula to write a program that computes where to place the line
breaks.

6



Dynamic Programming Algorithms and Program Design

Exercise 4 (A caching problem)

We are interested in the optimization of a web proxy. The proxy works like a cache of html
pages enabling to speed up the loading times when several requests to the same page take
place. However, the proxy only has at his disposal a limited amount of space and only a small
subset of all requested pages can be put into the cache. We consider the case where all requests
by the clients are known in advance.

Simple case

We consider initially that all html pages take the same space and that the proxy is able to store
2 pages simultaneously. Pages are represented by letters A,B,C, . . . and the list of all pages
requested is encoded as a string of characters. For example the string ABCBB means that the
proxy starts by delivering (and eventually caching) page A and then continues with page B and
so on. . .

The behaviour of the proxy is the following:

• when a request is processed and the corresponding page is in cache, the proxy returns the
page for free (no cost).

• when a request is processed and the corresponding page is not in cache the proxy down-
loads the page and stores it in the cache, eventually removing an other page from the
cache. In this case, we count one cache miss.

The objective of this exercise is to design an algorithm enabling the proxy to choose which
page to store or remove from the cache in order to minimize the total amount of cache misses.

We define a function f counting the minimal number of cache misses:

• fprx1, . . . xisry, zsq takes two arguments: the list of remaining requests : rx1, . . . xis and
the actual state of the cache: ry, zs

• f is a recursive function

• for example, with the cache containing pages A and C and requests BCB remaining, we
have:

fpBCB,ACq “ 1`minpfpCB,ACq, fpCB,ABq, fpCB,BCqq

We name n the total number of requests and p the number of different pages.

1. give the definition of fprx1, . . . xis, ry, zsq.

2. prove that the recursive calls to f are ending.

3. draw the call-graph of f for the following case: fpABCBA,Hq. What is the result ob-
tained ?

4. write a recursive program computing f . Your program will have a polynomial cost.

5. write a sequential program computing f .

6. what is the cost of your function ?

7. what is the cost in space of your function ?

8. is it possible to have a cost in space independant from n ?

7



Dynamic Programming Algorithms and Program Design

Towards a more realistic problem

We note by l the size of the cache (l can now be more than 2).

1. what modifications should you apply to your algorithm ? (describe the main idea)

2. what become the costs in space and time of your algorithm ?

3. we suppose the pages can be of different sizes.

(a) explain the modifications to apply to your algorithm.

(b) give an upper bound on the time of execution.

8



Dynamic Programming Algorithms and Program Design

Unused exercises

Exercise 5 (Distance between two strings)

In order to compare strings efficiently, we define a notion of distance between two strings as
the minimum number of modifications needed to apply to string X to transform it into string
Y . 3 types of modifications are possible:

• adding a letter α at beginning of string X (with cost addpαq)

• removing a letter α from beginning of string X (with cost rempαq)

• changing the first letter of string Y (with cost chgpα, βqq)

We define the distance function as follows, with α and β being different letters and ε denot-
ing the empty string:

distpαX,αY q “ distpX,Y q

distpαX, βY q “ min

$

&

%

addpβq ` distpαX, Y q
rempαq ` distpX,βY q

chgpα, βq ` distpX,Y q

distpε, εq “ 0

1. write a recursive function computing dist

2. optimize this recursive function by adding a cache

3. write a sequential version

4. is it possible to optimize the memory usage ?

Exercise 6 (Backpack)

You have a backpack able to hold up to K kilograms without breaking. While coming back from
holidays you intend to fill your bag with some items. Each item i has a weight wi and some
value vi. You need to choose which items you take with you. You can take several times the
same item but of course the total weight of the chosen items should be lower or equal to K.

Propose two different recursive formulas (recursing on the volume left and recursing on
the number of items considered) solving this problem. Write the corresponding recursive and
sequential algorithms. How do all of these algorithms compare ?

9


	Course

